买一套棋牌app需要多少 | English | 企業郵箱

維基百科中的傘齒輪介紹

2012-11-08 | 瀏覽量: 1193 买一套棋牌app需要多少
文章標簽:

买一套棋牌app需要多少 www.jbqtck.com.cn 介紹

兩個重要的概念,在齒輪間距表面和俯仰角。間距表面的齒輪是虛的沒有牙齒的表面,你將有平均的波峰和波谷的個別牙齒。一個普通的齒輪表面的間距是一個圓柱體的形狀。的齒輪的槳距角是面的間距的表面和軸之間的角度。

錐齒輪的^熟悉的種有小于90度的槳距角,因此,錐形。這種類型的錐齒輪被稱為外部,因為齒輪齒指出向外。嚙合的外部齒錐齒輪的節距表面與齒輪軸是同軸的兩個表面的頂點是在軸的交點的點。

有俯仰角大于90度的錐齒輪點向內,被稱為內部錐齒輪的牙齒。

具有^的90度的槳距角的傘齒輪具有齒指向外側與軸平行的和類似于點上的冠。這就是為什么這種類型的錐齒輪被稱為冠形齒輪。

斜切齒輪交配與齒的數目相等,并與成直角的軸的錐齒輪。

斜齒錐齒輪是那些相應的冠形齒輪具有齒,是直鏈和傾斜。
類型

根據幾何形狀的不同類型的錐齒輪:

    直齒錐齒輪有錐形的間距表面和牙齒直,向先端漸細。
    螺旋錐齒輪彎曲的角度,讓牙齒齒面接觸是漸進的和光滑。
    零度傘齒輪是非常相似的一個傘齒輪^的例外是在牙齒是彎曲的:每個齒的端部與該軸共面,但每個齒的中間周圍的齒輪圓周掃過。零度傘齒輪可以被認為是作為买一套棋牌app需要多少(其中也有彎曲的牙齒),但具有螺旋角為零(這樣的齒的端部與軸對齊)。
    準雙曲面錐齒輪螺旋錐相似,但在球場表面是雙曲線,而不是圓錐形。行星小齒輪可以上述偏移,或以下,所述齒輪的中心,從而使較大的小齒輪的直徑,以及更長的壽命和更平滑的網狀,與額外的比率,例如,6:1,8:1,10:1。在“斜角”的表面的旋轉軸線平行的限制的情況下,這種配置類似于一個蝸桿傳動。

雙曲線錐齒輪
螺旋錐齒輪的幾何形狀
繪圖符號列表

* NP - 小齒輪的齒號。

* Ng - 在給定的齒輪齒數。

* DG - 間距直徑。給定的齒輪。

* DP - 間距直徑。給定的齒輪。

* F - 面寬度(單顆牙齒的長度)。

* γ - 小齒輪俯仰角(弧度)。

* Γ - 齒輪齒距角(弧度)。

* AO - 錐的距離(從節圓軸軸交點的距離)。

* RB - 返回圓錐半徑。

* P - 徑節。牙徑每英寸(N / D)。

* P - 通函間距。每顆牙齒的圓周英寸(Π/ P)。

確定的沿面寬度縮放直齒圓柱齒輪齒形齒錐齒輪的形狀。進一步從齒輪和小齒輪軸的交點的,更大的齒的橫截面。如果牙齒表面,一路延伸到軸的交叉點,牙齒會接近無窮小的尺寸。的^大的部分的齒的齒的橫截面是相同的齒2 * rb時,或兩次返回圓錐的半徑與節距直徑從一個直齒圓柱齒輪的齒的橫截面,并與一個假想的齒數(N’)等于2 *Π倍的背錐半徑(RB)除以錐齒輪的齒輪齒距(P)。這種方法獲得的^大的齒廓的尺寸和形狀被稱為在“Tredgold”齒形狀近似。請參閱附近的背錐半徑尺寸,在上面的圖中所示的配置文件。平均半徑HP = TX n/63000→T = HP X 63000 / N T = RM所述WT→WT = HP X 63000 / NX室
牙齒

這里有兩個問題,關于牙齒的形狀。一個是橫截面輪廓的各個齒。另一種是直線或曲線上面對的齒輪的齒上設置:在其他詞語的直線或曲線沿其橫截面輪廓投影以形成實際的三維形狀的齒。的橫截面輪廓和齒線或曲線的主要作用是對齒輪的操作的平滑性。有些結果在平滑的齒輪比別人的行動。
齒線

傘齒輪上的齒可以是直鏈的,螺旋形或“零”。
直齒線

在直齒錐齒輪的齒是直的并且平行于發電機的錐形。這是^簡單形式的錐齒輪。它類似于一個直齒圓柱齒輪,只有圓錐形的,而不是圓柱形的。閘畫面中的齒輪直齒錐齒輪。在直鏈,每個齒嚙合時,它會影響相應的齒,并簡單地彎曲的齒輪齒,可以解決這個問題。
螺旋齒線
主要文章:螺旋錐齒輪

螺旋錐齒輪有自己的牙齒沿螺旋線。它們是有點類似于在成一定角度的齒的圓柱型螺旋齒輪,但與螺旋齒輪的齒也彎曲。

通過直齒的螺旋齒的優點是,它們嚙合逐漸多。在一端的齒輪的齒之間的接觸開始,然后蔓延在整個齒。這將導致較低的突然轉移力對牙齒當一個新的進來玩。直齒錐齒輪,突然的齒嚙合引起的噪聲,特別是在高速行駛時,并且這使得它們無法采取在高速行駛時的重負載而不破碎齒的沖擊應力。出于這些原因,一般僅限于線性速度低于1000英尺/分;,或為小齒輪,在1000rpm的轉速[1]在使用直齒錐齒輪
零度齒線

之間的直線和螺旋錐齒輪,零度齒錐齒輪是一種中間類型。他們的牙齒是彎曲的,但不傾斜。零度錐齒輪設計的意圖復制的兩岸錐齒輪的特性,但它們的使用了螺旋斜面切割過程產生。
制造弧齒錐齒輪
在齒輪制造過程中使用的材料

的各種材料用于齒輪包括各種鑄鐵,非有色材料與非 - 材料材料齒輪材料的選擇取決于:我)類型的服務㈡)外設速度㈢)度的精度要求四)的制造方法V)所需的尺寸和重量的驅動VI)的許用應力七)耐沖擊性VIII)耐磨損性。

1)鑄鐵流行的,由于其良好的穿著性能,優良的機械加工的鑄造方法生產復雜形狀的方便。這是適用于大型齒輪形狀復雜的需要。

2)鋼是足夠強大的,具有很高的耐磨損,耐磨損。

3)鑄鋼齒輪應力高,難以制造的齒輪。

4)普通碳素鋼找到高韌性的結合強度高的工業齒輪的應用程序。

5)合金鋼高齒強度和低齒面磨損。

6)鋁是用在需要低慣量的旋轉質量。

7)的非金屬材料制成的齒輪給予無噪音的操作,在高圓周速度。
錐齒輪

被稱為錐齒輪嚙合的兩個錐齒輪。錐齒輪,小齒輪和齒輪的間距錐角是從軸的角度,即,相交軸之間的角度來確定。圖顯示了兩個視圖的錐齒輪。
錐齒輪
應用

錐齒輪有許多不同的應用,如機車,船舶應用,汽車,印刷機,冷卻塔,電廠,鋼鐵廠,鐵路軌道檢測機等。

有關示例,請參閱以下文章:

    錐齒輪用于在差分驅動器,它可以傳輸兩個軸旋轉速度不同,如那些上轉彎汽車的電源。

    傘齒輪被用作一個手鉆的主要機制。當手柄是在垂直方向上轉動的鉆頭,變更錐齒輪的卡盤的旋轉的水平旋轉。錐齒輪在一個手鉆有額外的好處增加的卡盤的旋轉速度,這使得有可能以鉆材料的范圍。

    一個傘齒輪刨床中的齒輪在裝配過程中,并允許較小的調整,不集中的齒的端部上的負載的情況下允許一些由于操作負載下偏轉的位移。

    螺旋錐齒輪旋翼機驅動系統的重要組成部分。這些組件是必需的,在高速行駛時,高負荷,和大量的負載周期操作。在此應用中,螺旋錐齒輪用于重定向從水平的燃氣渦輪發動機的垂直轉子軸。

五谷​​磨房在多德雷赫特的錐齒輪。注意木齒插入的齒輪中的一個。
優點

    該齒輪使得有可能改變的操作角度。
    不同的齒的數量(有效直徑)在每個車輪允許改變機械優勢。通過增加或減少的驅動和從動輪之間的齒數之比,人們可以改變兩者之間的比率的旋轉,這意味著有關的第二輪的旋轉驅動和扭矩可以改變到第一,隨速度的增加和轉矩減少,或速度下降,轉矩增大。

缺點

    這種齒輪的一個車輪與其互補輪和沒有其他的設計工作。
    必須^安裝。
    的軸的軸承必須能夠支持顯著勢力。


我廠主營:小模數齒輪 螺旋傘齒輪 傘齒輪 直齒錐齒輪 園林工具齒輪 縫紉機齒輪 割草機齒輪
原文:

Introduction

Two important concepts in gearing are pitch surface and pitch angle. The pitch surface of a gear is the imaginary toothless surface that you would have by averaging out the peaks and valleys of the individual teeth. The pitch surface of an ordinary gear is the shape of a cylinder. The pitch angle of a gear is the angle between the face of the pitch surface and the axis.

The most familiar kinds of bevel gears have pitch angles of less than 90 degrees and therefore are cone-shaped. This type of bevel gear is called external because the gear teeth point outward. The pitch surfaces of meshed external bevel gears are coaxial with the gear shafts; the apexes of the two surfaces are at the point of intersection of the shaft axes.

Bevel gears that have pitch angles of greater than ninety degrees have teeth that point inward and are called internal bevel gears.

Bevel gears that have pitch angles of exactly 90 degrees have teeth that point outward parallel with the axis and resemble the points on a crown. That’s why this type of bevel gear is called a crown gear.

Miter gears are mating bevel gears with equal numbers of teeth and with axes at right angles.

Skew bevel gears are those for which the corresponding crown gear has teeth that are straight and oblique.
Types

Bevel gears are classified in different types according to geometry:

    Straight bevel gears have conical pitch surface and teeth are straight and tapering towards apex.
    Spiral bevel gears have curved teeth at an angle allowing tooth contact to be gradual and smooth.
    Zerol bevel gears are very similar to a bevel gear only exception is the teeth are curved: the ends of each tooth are coplanar with the axis, but the middle of each tooth is swept circumferentially around the gear. Zerol bevel gears can be thought of as spiral bevel gears (which also have curved teeth) but with a spiral angle of zero (so the ends of the teeth align with the axis).
    Hypoid bevel gears are similar to spiral bevel but the pitch surfaces are hyperbolic and not conical. Pinion can be offset above, or below,the gear centre, thus allowing larger pinion diameter, and longer life and smoother mesh, with additional ratios e.g., 6:1, 8:1, 10:1. In a limiting case of making the "bevel" surface parallel with the axis of rotation, this configuration resembles a worm drive.

Hypoid Bevel Gear
Geometry of Bevel Gear
List of Drawing Symbols

* Np - No. of teeth on Pinion.

* Ng - No. of teeth on given Gear.

* Dg - Pitch Dia. of given Gear.

* Dp - Pitch Dia. of given Pinion.

* F - Face Width (Length of single tooth).

* γ - Pinion Pitch Angle (Radians).

* Γ - Gear Pitch Angle (Radians).

* Ao - Cone Distance (Distance from pitch circle to intersection of shaft axes).

* rb - Back-Cone Radius.

* P - Diametrical Pitch. Teeth per inch of Pitch Diameter (N/D).

* p - Circular Pitch. Inches of circumference per tooth (Π/P).

Tooth shape for bevel gears is determined by scaling spur gear tooth shapes along the face width. The further from the intersection of the gear and pinion axes, the bigger the tooth cross sections are. If the tooth face were to extend all the way to the axes intersection, the teeth would approach infinitesimal size there. The tooth cross-section at the largest part of the tooth is identical to the tooth cross-section of a tooth from a spur gear with Pitch Diameter of 2* rb, or twice the Back-Cone Radius, and with an imaginary number of teeth (N’) equal to 2*Π times the Back-Cone Radius (rb) divided by the Circular Pitch of the bevel gear (p). This method of obtaining the dimensions and shape of the largest tooth profile is known at the “Tredgold” tooth-shape approximation. Refer to the profiles shown near the Back-cone radius dimension in the drawing above. Mean radius- Hp=Tx n/63000 → T = Hp x 63000/n T = Rm x Wt → Wt = Hp x 63000/ n x Rm
Teeth

There are two issues regarding tooth shape. One is the cross-sectional profile of the individual tooth. The other is the line or curve on which the tooth is set on the face of the gear: in other words the line or curve along which the cross-sectional profile is projected to form the actual three-dimensional shape of the tooth. The primary effect of both the cross-sectional profile and the tooth line or curve is on the smoothness of operation of the gears. Some result in a smoother gear action than others.
Tooth line

The teeth on bevel gears can be straight, spiral or "zero".
Straight tooth lines

In straight bevel gears the teeth are straight and parallel to the generators of the cone. This is the simplest form of bevel gear. It resembles a spur gear, only conical rather than cylindrical. The gears in the floodgate picture are straight bevel gears. In straight, when each tooth engages it impacts the corresponding tooth and simply curving the gear teeth can solve the problem.
Spiral tooth lines
Main article: spiral bevel gear

Spiral bevel gears have their teeth formed along spiral lines. They are somewhat analogous to cylindrical type helical gears in that the teeth are angled; however with spiral gears the teeth are also curved.

The advantage of the spiral tooth over the straight tooth is that they engage more gradually. The contact between the teeth starts at one end of the gear and then spreads across the whole tooth. This results in a less abrupt transfer of force when a new pair of teeth come in to play. With straight bevel gears, the abrupt tooth engagement causes noise, especially at high speeds, and impact stress on the teeth which makes them unable to take heavy loads at high speeds without breaking. For these reasons straight bevel gears are generally limited to use at linear speeds less than 1000 feet/min; or, for small gears, under 1000 r.p.m.[1]
Zerol tooth lines

Zerol bevel gears are an intermediate type between straight and spiral bevel gears. Their teeth are curved, but not angled. Zerol bevel gears are designed with the intent of duplicating the characteristics of a strait bevel gear but they are produced using a spiral bevel cutting process.
Manufacturing Bevel Gear
Materials used in gear manufacturing process

The various materials used for gears include a wide variety of cast irons, non ferrous material &non – material materials the selection of the gear material depends upon: i) Type of service ii) Peripheral speed iii) Degree of accuracy required iv) Method of manufacture v) Required dimensions & weight of the drive vi) Allowable stress vii) Shock resistance viii) Wear resistance.

1) Cast iron is popular due to its good wearing properties, excellent machinability & ease of producing complicated shapes by the casting method. It is suitable where large gears of complicated shapes are needed.

2) Steel is sufficiently strong & highly resistant to wear by abrasion.

3) Cast steel is used where stress on gear is high & it is difficult to fabricate the gears.

4) Plain carbon steels find application for industrial gears where high toughness combined with high strength.

5) Alloy steels are used where high tooth strength & low tooth wear are required.

6) Aluminum is used where low inertia of rotating mass is desired.

7) Gears made of non–metallic materials give noiseless operation at high peripheral speeds.
Bevel Gearing

Two bevel gears in mesh is known as bevel gearing. In bevel gearing, the pitch cone angles of the pinion and gear are to be determined from the shaft angle, i.e., the angle between the intersecting shafts. Figure shows two views of a bevel gearing.
Bevel Gearing
Applications

The bevel gear has many diverse applications such as locomotives, marine applications, automobiles, printing presses, cooling towers, power plants, steel plants, railway track inspection machines, etc.

For examples, see the following articles on:

    Bevel gears are used in differential drives, which can transmit power to two axles spinning at different speeds, such as those on a cornering automobile.

    Bevel gears are used as the main mechanism for a hand drill. As the handle of the drill is turned in a vertical direction, the bevel gears change the rotation of the chuck to a horizontal rotation. The bevel gears in a hand drill have the added advantage of increasing the speed of rotation of the chuck and this makes it possible to drill a range of materials.

    The gears in a bevel gear planer permit minor adjustment during assembly and allow for some displacement due to deflection under operating loads without concentrating the load on the end of the tooth.

    Spiral bevel gears are important components on rotorcraft drive systems. These components are required to operate at high speeds, high loads, and for a large number of load cycles. In this application, spiral bevel gears are used to redirect the shaft from the horizontal gas turbine engine to the vertical rotor.

Bevel gears on grain mill at Dordrecht. Note wooden teeth inserts on one of the gears.
Advantages

    This gear makes it possible to change the operating angle.
    Differing of the number of teeth (effectively diameter) on each wheel allows mechanical advantage to be changed. By increasing or decreasing the ratio of teeth between the drive and driven wheels one may change the ratio of rotations between the two, meaning that the rotational drive and torque of the second wheel can be changed in relation to the first, with speed increasing and torque decreasing, or speed decreasing and torque increasing.

Disadvantages

    One wheel of such gear is designed to work with its complementary wheel and no other.
    Must be precisely mounted.
    The shafts’ bearings must be capable of supporting significant forces.

相關文章
相關產品
  • TX1-001
    TX1-001
  • TX1-002
    TX1-002
  • TX1-003
    TX1-003
  • TX1-004
    TX1-004
  • TX1-005
    TX1-005
  • TX1-006
    TX1-006
  • TX1-007
    TX1-007
  • TX1-008
    TX1-008
Top